Adaptive computation of smallest eigenvalues of self-adjoint elliptic partial differential equations

نویسندگان

  • Volker Mehrmann
  • Agnieszka Miedlar
چکیده

We consider a new adaptive finite element (AFEM) algorithm for self-adjoint elliptic PDE eigenvalue problems. In contrast to other approaches we incorporate the inexact solutions of the resulting finite dimensional algebraic eigenvalue problems into the adaptation process. In this way we can balance the costs of the adaptive refinement of the mesh with the costs for the iterative eigenvalue method. We present error estimates that incorporate the discretization errors, approximation errors in the eigenvalue solver and roundoff errors, and use these for the adaptation process. We show that it is also possible to restrict to very few iterations of a Krylov subspace solver for the eigenvalue problem on coarse meshes. Several examples are presented to show that this new approach achieves much better complexity than previous AFEM approaches which assume that the algebraic eigenvalue problem is solved to full accuracy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An analytic solution for a non-local initial-boundary value problem including a partial differential equation with variable coefficients

‎This paper considers a non-local initial-boundary value problem containing a first order partial differential equation with variable coefficients‎. ‎At first‎, ‎the non-self-adjoint spectral problem is derived‎. ‎Then its adjoint problem is calculated‎. ‎After that‎, ‎for the adjoint problem the associated eigenvalues and the subsequent eigenfunctions are determined‎. ‎Finally the convergence ...

متن کامل

COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERINGCommun

SUMMARY The computation of a few smallest eigenvalues of generalized algebraic eigenvalue problems is studied. The considered problems are obtained by discretizing self-adjoint second-order elliptic partial diierential eigenvalue problems in two-dimensional or three-dimensional domains. The standard Lanczos algorithm with the complete orthogonalization is used to compute some eigenvalues of the...

متن کامل

Asymptotic distribution of eigenvalues of the elliptic operator system

Since the theory of spectral properties of non-self-accession differential operators on Sobolev spaces is an important field in mathematics, therefore, different techniques are used to study them. In this paper, two types of non-self-accession differential operators on Sobolev spaces are considered and their spectral properties are investigated with two different and new techniques.

متن کامل

Variable-step preconditioned conjugate gradient method for partial symmetric eigenvalue problems

in which A is a large sparse symmetric positive definite matrix, λ is an eigenvalue and u is a corresponding eigenvector. The evaluation of one or more smallest eigenpairs has much practical interest for describing the characteristics of physical phenomena. For example, smallest eigenvalues characterize the base frequences of vibrating mechanical structures. Typically, the matrix A is a discret...

متن کامل

The Block Preconditioned Steepest Descent Iteration for Elliptic Operator Eigenvalue Problems

The block preconditioned steepest descent iteration is an iterative eigensolver for subspace eigenvalue and eigenvector computations. An important area of application of the method is the approximate solution of mesh eigenproblems for self-adjoint and elliptic partial differential operators. The subspace iteration allows to compute some of the smallest eigenvalues together with the associated i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Numerical Lin. Alg. with Applic.

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2011